
Simple data type: contain a single value eg- float, int, char 

Complex data type: has multiple parts. Multiple simple data type joined into a single entity. EG- 

array 

 

Array: is a complex data type that group together a number of different values of the same type in a 

single structure (array of char, array of int) 

 Array is a contiguous block (joined block of memory) of memory holding “n” elements of 

given type.  

o Index- Are numbers that identify an element eg: 0, 1,2 3, are index numbers 

o Element- values stored in memory 

o Size- how many elements stored int myNums[50] -1 = 49 elements total number of 

elements 

o Advantages: Instead of having lots of separate variables, each storing a value, we 

can have a single variable storing many pieces of data  

o Don’t have to declare many variables individually  

o When passing array into a function as parameter  

o Useful: scalability for when more 

 

Static array vs dynamic array: Create array, declare, and initialize size and it is fixed. Dynamic array 

needs an array and calculate size of array at runtime and creates size that is needed (decides when 

program created how big). 

 

Strings: Strings are data types that are simply a sequence or string of characters of a given length. So 

a series of characters related with each other. (like Array of characters). Array size is static while 

length of array changes. Eg: size is 10 so the length may be 1 2 or 9.  

 

Two types of algorithmic approach to dealing with lots of data  

Multiple loaded records:  

 This involves loading multiple records from the file into memory. 
 This will involve allocating sufficient memory to hold all of these records. 
 This will usually be done with an array. 

 
Single batch processing: 
 

 The alternative to loading multiple records is to only load as little of the file into memory at 
one time as possible. 

 involves reading only a single record in, processing it in memory and then reading in the next 
record. 

 
Principle of Object Orientated programming: 
 
 



Abstraction/Encapsulation: 

 Is where people who are using classes do not need to know how those classes work, just 
what they do (encapsulation). 

 Access to either the code or data inside of an object is often restricted. 
 
 

 
Code-reuse/Inheritance:  
 

 Classes created must be general “blueprints”. 

 Objects can then be created as instances of these classes facilitating code re-use. 
 

 
High-Cohesion:  

 Applies to both the design of the class and their code/modules 
o Classes only store data that are relevant to their task 
o Methods are narrowed focused in terms of the task they perform 

 
Low coupling:  

 It is important data is completely inaccessible outside of the object 

 In some ways it is slightly less significant since less data is passed around between modules. 
 

 
 
Classes vs Objects: 
 

 A class therefore is a general specification of an object, a little like a blueprint or a design eg 
ucoz. Objects are contained within a class they use the class as a blueprint/backdrop they 
can inherit from original class.  

 Classes are therefore effectively complex data types and objects are like variables declared 
from that type. 

 So Class relates to the properties of object from  a class Object 
 
 
Object Orientated Programming vs Structured Model/Modular Programming: 
 

 Structured Model: involves taking the high-level algorithm which solves a problem and 
dividing it up into the individual steps 

 OOP: OO paradigm, the program is divided up into objects 
 

 OO is much more data-centric in terms of developing a solution 
 Traditional approach is much more concerned with the steps involved in solving the problem 

 
 
 

 
 
 


